Is the virus airborne?

For a while, there was no consensus from scientists about whether coronavirus meets the scientific definition of “airborne.” This was both a semantic problem (health professionals from all walks of life have different criteria for what qualifies as “airborne”), and because of a lack of data (we just didn’t know how long the virus could last in the air, and whether it was still infectious).

Post a Comment

Response Section


Query Response

Responder: Covid-19 Expert

Over time the evidence has grown. Several big studies point to airborne transmission of the virus as a major route for the spread of covid-19. Other studies have suggested the virus can remain in aerosolized droplets for hours. One new study led by researchers at Tulane University shows that infectious aerosolized particles of SARS-CoV-2 could actually linger in the air for up to 16 hours, and maintain infectivity much longer than MERS and SARS-CoV-1 (the other big coronaviruses to emerge this century). Given all this, the question now is less about whether airborne transmission is real, and more about how we should respond. If the virus truly is airborne, it means we that sanitizing surfaces is less effective than we thought. Social distancing and mask usage is more paramount, and should be enforced much more aggressively. Ventilation is key to making sure airborne virus particles cannot collect and linger in the air. We have to lean more heavily on technologies that can disinfect whole rooms at once, like UV light. We have to reduce the number of people allowed indoors, and ensure they can get in and out as fast as possible—the longer people spend time indoors, the more airborne virus is able to accumulate in the air. And perhaps most of all, we need to slow down or even delay re-openings in several cases.